mirror of
https://github.com/sshlien/abcmidi.git
synced 2025-12-06 15:05:07 +00:00
Compare commits
12 Commits
2023.12.23
...
2024.03.02
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6db6eb0979 | ||
|
|
4d51b779bf | ||
|
|
bf013dc428 | ||
|
|
6441b47841 | ||
|
|
6a3de68779 | ||
|
|
c4c489d111 | ||
|
|
b9c48dc778 | ||
|
|
eac28d9489 | ||
|
|
135e70c5e6 | ||
|
|
79e7ac2d97 | ||
|
|
ad41b9b053 | ||
|
|
b3d18d9722 |
@@ -49,7 +49,7 @@ Matching:
|
||||
|
||||
|
||||
|
||||
#define VERSION "1.82 June 14 2022 abcmatch"
|
||||
#define VERSION "1.83 Feb 19 2024 abcmatch"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <ctype.h>
|
||||
|
||||
265
doc/CHANGES
265
doc/CHANGES
@@ -15182,6 +15182,271 @@ case statements were removed since they are unnecessary.
|
||||
|
||||
|
||||
|
||||
December 28 2023
|
||||
|
||||
abc2midi: tuplet bug
|
||||
|
||||
The following example produces the error
|
||||
|
||||
Warning in line-char 7-8 : Different length notes in tuple
|
||||
|
||||
X:1
|
||||
T:Test
|
||||
L:1/4
|
||||
Q:1/4=90
|
||||
M:3/4
|
||||
K:D
|
||||
(3[ac']/d'/[ac']/ [ac']/z/ |
|
||||
|
||||
Analysis: though it is legal to have different length notes (and
|
||||
rests) in a tuple, this is clearly a bug. The message occurs in the
|
||||
function event_note() in store.c. tnote_num and tnote_denom should
|
||||
contain the expected length of the note in the tuple based on the
|
||||
first note encountered in the tuple. The value of tnote_denom was
|
||||
not adjusted by event_chordoff to compensate by the length value
|
||||
specified at the end of the [ac'] chord, resulting in the problem.
|
||||
|
||||
|
||||
January 15 2024
|
||||
|
||||
abc2midi bug: the following example produces a warning, but the
|
||||
the output midi file is correct.
|
||||
|
||||
Warning in line-char 7-23 : Track 1 Bar 1 has 1 time units while the time signature has 2
|
||||
|
||||
X:1
|
||||
T:Test trill
|
||||
L:1/4
|
||||
M:2/2
|
||||
Q:1/2=60
|
||||
K:Dm
|
||||
!trill!"C"g4- | g2^c2 |
|
||||
|
||||
Analysis: this warning is produced by checkbar() in genmidi.c. This problem was
|
||||
reported in this file on November 23 2012. The code for handling tied notes is
|
||||
quite intricate and I do not understand it. I am hesitant in tampering with the code.
|
||||
|
||||
|
||||
February 14 2024
|
||||
|
||||
abc2midi: repeat bug
|
||||
|
||||
For the following example:
|
||||
|
||||
X:1
|
||||
T: Repeat bug
|
||||
M: 1/4
|
||||
L: 1/4
|
||||
P:A
|
||||
K:C
|
||||
P:A
|
||||
A | B & C :|
|
||||
|
||||
Abc2midi produces a midi file which looks like this
|
||||
V:1
|
||||
A | B |
|
||||
V:2
|
||||
Z | C | Z | C|
|
||||
|
||||
the second voice is repeated by the first voice is not.
|
||||
|
||||
Removing the P:A prior to K:C fixes the problem.
|
||||
Alternatively, inserting the missing left repeat |:
|
||||
(eg) |: A | B & C :|
|
||||
also resolves the problem.
|
||||
|
||||
Apparently, abc2midi does not insert the left repeat in the
|
||||
correct position.
|
||||
|
||||
Analysis: abc2midi produces an internal representation of the
|
||||
music using the feature[] array. Since this tune uses split
|
||||
voices using the & character, the internal representation now
|
||||
contains two voices. abc2midi then calls scan_for_missing_repeats()
|
||||
and add_missing_repeats() in store.c in order to insert the missing
|
||||
left repeats in the internal representation. Unfortunately,
|
||||
scan_for_missing_repeats puts the left repeat in the wrong place where
|
||||
it is ineffective.
|
||||
|
||||
The code in scan_for_missing_repeats is quite complicated
|
||||
because it has to work for either voices or parts. It searches
|
||||
for either VOICE or PART code in the feature array and inserts
|
||||
the left repeat immediately following this code. If both
|
||||
VOICE and PART are present, VOICE should immediately follow PART
|
||||
in order that scan_for_missing_repeats works correctly. Unfortunately,
|
||||
they occur in the opposite order. The function event_split_voice()
|
||||
inserts the VOICE code in the wrong position, mainly because
|
||||
the v1index address is incorrect.
|
||||
|
||||
Fix: event_part() in store.c, I added the line
|
||||
v1index = notes; /* [SS] 2024-02-14 */
|
||||
following
|
||||
addfeature(PART, (int)*p, 0, 0);
|
||||
|
||||
This appears to resolve this issue.
|
||||
|
||||
|
||||
abc2midi: another related repeat bug
|
||||
|
||||
For the following example:
|
||||
|
||||
X:1
|
||||
T: A related repeat bug
|
||||
P:A
|
||||
M:3/4
|
||||
L:1/4
|
||||
K:D
|
||||
P:X
|
||||
Z | zzz & b'b'b' :|
|
||||
P:A
|
||||
CCC | DDD :|
|
||||
|
||||
abc2midi produces incorrect output for this file. It does not
|
||||
insert the left repeats in the right place in its internal
|
||||
representation.
|
||||
|
||||
Fix: for the present time you need to put the left repeats in the
|
||||
file like this.
|
||||
|
||||
|:Z | zzz & b'b'b' :|
|
||||
P:A
|
||||
|:CCC | DDD :|
|
||||
|
||||
|
||||
|
||||
February 19 2024
|
||||
|
||||
abc2midi bug and fix submitted by James Allwright.
|
||||
|
||||
The parser recognizes |: but not |::
|
||||
In the following example,
|
||||
|
||||
X:1
|
||||
T: ||: bug
|
||||
M: 2/4
|
||||
L: 1/4
|
||||
K: G
|
||||
G||:AB|[1cz:||[2ed|
|
||||
|
||||
the repeat goes back to 0th bar (containing G) instead of
|
||||
bar 1 (containing AB).
|
||||
|
||||
Fix: in parsemusic() in parseabc.c, the following lines were
|
||||
added.
|
||||
|
||||
if (*(p+1) == ':') {
|
||||
/* handle ||: as a variant of |: [JA] 2024-02-19 */
|
||||
check_and_call_bar (BAR_REP, "");
|
||||
p = p + 2;
|
||||
|
||||
The change also has impact on yaps, abc2abc, and abcmatch.
|
||||
|
||||
|
||||
February 22 2024
|
||||
|
||||
abc2midi bug
|
||||
|
||||
Adding snm=something after a clef= declaration
|
||||
removes the offset from the clef. In the following
|
||||
example,
|
||||
|
||||
X:1
|
||||
T: with snm
|
||||
M:4/4
|
||||
L:1/4
|
||||
V:1 clef=treble-8
|
||||
V:2 clef=treble-8 snm=anything
|
||||
K:C
|
||||
[V:1] z z C z |
|
||||
[V:2] z z z C |
|
||||
|
||||
C in voice 1 is shifted down an octave but C in voice 2
|
||||
is untouched.
|
||||
|
||||
Analysis: parsevoice attempts to parse each token (clef=, octave=,
|
||||
transpose=, sound=, name= and etc.) by calling various functions
|
||||
parseclef(), parsetranspose(), parseoctave(), and etc.) until it
|
||||
succeeds. parseclef is thus called on every token and returns either
|
||||
1 or 0 depending whether it was successful or not. parseclef calls
|
||||
the function isclef() to do the work. Unfortunately, isclef()
|
||||
zeros the variable new_clef->octave_offset whether or not a
|
||||
clef is declared in the token. Therefore the token snm=...
|
||||
causes new_clef->octave_offset to be zeroed. The next function
|
||||
which follows, get_extended_clef_details does set the octave_offset, but
|
||||
it is only called if the token was a clef.
|
||||
|
||||
Fix: commented out the line in isclef() which zeros the octave_offset.
|
||||
|
||||
|
||||
February 25 2024
|
||||
|
||||
abc2midi note:
|
||||
|
||||
Besides clef=treble-8, the abcmidi 2.2 standard also recognizes
|
||||
clef=treble_8, clef=treble^8 and etc. These clefs do not transpose
|
||||
the notes in the midi file but merely put the appropriate symbol
|
||||
on the clef. Abc2midi presently ignores these endings in the
|
||||
function get_clef_octave_offset() in music_utils.c. When it is
|
||||
necessary for the parseclef to see these endings the following fix
|
||||
is necessary.
|
||||
|
||||
Fix: readword() called by parseclef breaks the clef string
|
||||
when it encounters either a ^ or _ in order to handle sharps
|
||||
and flats in the K: declaration. (See note above April 8 2015.)
|
||||
It is necessary to use the new function, readword_with_()
|
||||
which does not break the string on encountering either
|
||||
the underscore _ or caret ^.
|
||||
|
||||
|
||||
March 02 2024
|
||||
|
||||
abc2midi deviance from abc standard 2.2
|
||||
|
||||
The clef=, octave=, and transpose= in the V: command are
|
||||
expected to be persistant and independent of each other. They
|
||||
are changed independently any time a new clef=, octave=,
|
||||
or transpose= appears. These are stored in 3 variables.
|
||||
And the pitch of a note is assigned the sum of these values.
|
||||
|
||||
Analysis:
|
||||
event_note computes the midi pitch from note (one of a,b,c,d,e,f,g),
|
||||
the xoctave, clef, accidental, and mult which are all input
|
||||
parameters to that function. In addition it accesses the global
|
||||
voice structure v of the active voice to get the octaveshift
|
||||
for that voice. The function computes the local variable octave
|
||||
from xoctave, clef->octave_offset and v->octaveshift.
|
||||
|
||||
Prior to this fix and since May 21 2021, the local variable
|
||||
octave was either assigned to the value of
|
||||
clef->octave_offset + xoctave or to v->octaveshift + xoctave when
|
||||
v->octaveshift is nonzero. In addition, event_voice also changes
|
||||
v->octaveshift when it encounters a new clef=.
|
||||
|
||||
Fix:
|
||||
|
||||
In order to comply with this standard, the code in event_voice
|
||||
was modified to prevent clef= from modifying v->octaveshift. In
|
||||
addition event_note now computes octave as below.
|
||||
octave = clef->octave_offset + v->octaveshift + xoctave; /*[SS] 2024-03-02*/
|
||||
|
||||
Note this is a significant change as it could break some abc
|
||||
files. For example, if the user put clef=treble+8 and also
|
||||
octave=+1, just to be safe, then the resulting octave would be higher
|
||||
than expected. Fortunately, octave= is still rarely used.
|
||||
|
||||
Here is the test file for verifying this fix.
|
||||
|
||||
X:1
|
||||
T:Test for octave shifts in sound
|
||||
M:4/4
|
||||
K:C
|
||||
% The following seven notes should have equal sound
|
||||
V:1 clef=treble
|
||||
d8 |\
|
||||
[V:1 clef=treble+8] D8 |\
|
||||
[V:1 octave=-1] d8 |\
|
||||
[V:1 transpose=12] D8 |\
|
||||
[V:1 clef=treble] d8 |\
|
||||
[V:1 octave=0] D8 |\
|
||||
[V:1 transpose=0] d8 |]
|
||||
|
||||
|
||||
|
||||
107
doc/drums.txt
107
doc/drums.txt
@@ -1,107 +0,0 @@
|
||||
Advamced Percussion Analysis
|
||||
in the Midistats Program
|
||||
|
||||
This is an addendum to the midistats.1 file.
|
||||
|
||||
The MIDI file devotes channel 9 to the percussion instruments
|
||||
and over 60 percussion instruments are defined in the MIDI
|
||||
standard. Though there is a lot of diversity in the percussion
|
||||
track, for most MIDI files only the first 10 or so percussion
|
||||
instruments are important in defining the character of the track. The
|
||||
program Midiexplorer has various tools for exposing the percussion
|
||||
channel which are described in the documentation. The goal
|
||||
here is to find the essential characteristics of the percussion
|
||||
track which distinguishes the MIDI files. This is attempted
|
||||
in the program midistats. Here is a short description.
|
||||
|
||||
-corestats
|
||||
Produces a line with 5 numbers separated by tabs. eg
|
||||
1 8 384 4057 375
|
||||
It returns the number of tracks, the number of channels, the
|
||||
number of divisions per quarter note beat (ppqn),
|
||||
the number of note onsets in the midi file, and the maximum
|
||||
number of quarter note beats in midi file.
|
||||
|
||||
-pulseanalysis
|
||||
Counts the number of note onsets as a function of its onset time
|
||||
relative to a beat, grouping them into 12 intervals and returns
|
||||
the result as a discrete probability density function. Generally,
|
||||
the distribution consists of a couple of peaks corresponding
|
||||
to quarter notes or eigth notes. If the distribution is flat,
|
||||
it indicates that the times of the note occurrences have not been
|
||||
quantized into beats and fractions. Here is a sample output.
|
||||
0.3496,0.0000,0.0000,0.1602,0.0000,0.0002,0.2983,0.0000,0.0000,0.1914,0.0002,0.0001
|
||||
|
||||
-panal
|
||||
Counts the number of note onsets for each percussion instrument. The first
|
||||
number is the code (pitch) of the instrument, the second number is the
|
||||
number of occurrences. eg.
|
||||
35 337 37 16 38 432 39 208 40 231 42 1088 46 384 49 42 54 1104 57 5 70 1040 85 16
|
||||
|
||||
-ppatfor n
|
||||
where n is the code number of the percussion instrument. Each beat
|
||||
is represented by a 4 bit number where the position of the on-bit
|
||||
indicates the time in the beat when the drum onset occurs. The bits
|
||||
are ordered from left to right (higher order bits to lower order
|
||||
bits). This is the order of bits that you would expect in a
|
||||
time series.
|
||||
Thus 0 indicates that there was no note onset in that beat, 1 indicates
|
||||
a note onset at the end of the beat, 4 indicates a note onset
|
||||
in the middle of the beat, and etc. The function returns a string
|
||||
of numbers ranging from 0 to 7 indicating the presence of note onsets
|
||||
for the selected percussion instrument for the sequence of beats
|
||||
in the midi file. Here is a truncated sample of the output.
|
||||
|
||||
0 0 0 0 0 0 0 0 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 4 4 0
|
||||
1 0 0 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 0 0
|
||||
1 0 5 0 1 0 5 0 1 etc.
|
||||
|
||||
One can see a repeating 4 beat pattern.
|
||||
|
||||
-ppat
|
||||
midistats attempts to find two percussion instruments in the midi file
|
||||
which come closest to acting as the bass drum and snare drum.
|
||||
If it is unsuccessful, it returns a message of its failue. Otherwise,
|
||||
encodes the position of these drum onsets in a 8 bit byte for each
|
||||
quarter note beat in the midi file. The lower (right) 4 bits encode the
|
||||
bass drum and the higher (left) 4 bits encode the snare drum in the
|
||||
same manner as described above for -ppatfor.
|
||||
0 0 0 0 0 0 0 0 0 0 33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145
|
||||
33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145
|
||||
33 145 33 145 33 145 33 145 33 145 33 and etc.
|
||||
|
||||
-ppathist
|
||||
computes and displays the histogram of the values that would appear
|
||||
when running the -ppat. eg.
|
||||
bass 35 337
|
||||
snare 38 432
|
||||
1 (0.1) 64 32 (2.0) 8 33 (2.1) 136 144 (9.0) 8 145 (9.1) 136
|
||||
|
||||
The bass percussion code, the number of onsets, and the snare
|
||||
percussion code and the number of onsets are given in the
|
||||
first two lines. In the next line the number of occurrences of
|
||||
each value in the -ppat listing is given. The number in parentheses
|
||||
splits the two 4-bit values with a period. Thus 33 = (2*16 + 1).
|
||||
|
||||
-nseqfor -n
|
||||
|
||||
Note sequence for channel n. This option produces a string for bytes
|
||||
indicating the presence of a note in a time unit corresponding to
|
||||
an eigth note. Thus each quarter note beat is represented by two
|
||||
bytes. The pitch class is represented by the line number on the
|
||||
staff, where 0 is C. Thus the notes on a scale are represented
|
||||
by 7 numbers, and sharps and flats are ignored. The line number is
|
||||
then converted to a bit position in the byte, so that the pitch
|
||||
classes are represented by the numbers 1,2,4,8, and etc. A chord
|
||||
of consisting of two note onsets would set two of the corresponding
|
||||
bits. If we were to represent the full chromatic scale consisting
|
||||
of 12 pitches, then we would require two-byte integers or
|
||||
twice of much memory.
|
||||
|
||||
Though the pitch resolution is not sufficient to distinguish
|
||||
major or minor chords, it should be sufficient to be identify some
|
||||
repeating patterns.
|
||||
|
||||
|
||||
|
||||
|
||||
232
doc/midistats.1
232
doc/midistats.1
@@ -1,4 +1,4 @@
|
||||
.TH MIDISTATS 1 "17 November 2023"
|
||||
.TH MIDISTATS 1 "11 February 2024"
|
||||
.SH NAME
|
||||
\fBmidistats\fP \- program to summarize the statistical properties of a midi file
|
||||
.SH SYNOPSIS
|
||||
@@ -26,7 +26,7 @@ applies.
|
||||
program is followed by the channel number and the General Midi Program
|
||||
number.
|
||||
.PP
|
||||
trkinfo is an array of 8 numbers which indicates the statistical properties
|
||||
trkinfo is an array of 19 numbers which indicates the statistical properties
|
||||
of the track of interest. The following data is given:
|
||||
the channel number,
|
||||
the first program assigned to this channel,
|
||||
@@ -44,6 +44,10 @@ the minimum note length in pulses
|
||||
the maximum note length in pulses
|
||||
the number of gaps in the channel
|
||||
the entropy of the pitch class histogram for that channel
|
||||
the number of notes whose pitch were the same as the previous note
|
||||
the number of notes whose pitch changed by less than 4 semitones
|
||||
the number of notes whose pitch changed by 4 or more semitones
|
||||
(In event of a chords the maximum pitches are compared.)
|
||||
.PP
|
||||
After processing all the individual tracks, the following information
|
||||
applies to the entire midi file.
|
||||
@@ -55,6 +59,8 @@ file.
|
||||
.PP
|
||||
pitchbends specifies the total number of pitchbends in this file.
|
||||
.PP
|
||||
pitchbendin c n specifies the number of pitchbends n in channel c
|
||||
.PP
|
||||
progs is a list of all the midi programs addressed
|
||||
.PP
|
||||
progsact the amount of activity for each of the above midi programs.
|
||||
@@ -74,9 +80,27 @@ instruments.
|
||||
pitches is a histogram for the 11 pitch classes (C, C#, D ...B)
|
||||
that occur in the midi file.
|
||||
.PP
|
||||
key indicates the key of the music, the number of sharps (positive) or
|
||||
flats (negative) in the key signature, and a measure of the confidence
|
||||
in this key signature. The key was estimated from the above pitch histogram
|
||||
by convolving with Craig Sapp's model. The peak of rmaj or rmin (below)
|
||||
indicates the key. A correlation less than 0.4 indicates that the pitch
|
||||
histogram does not follow the histogram of a major or minor scale.
|
||||
(It may be the result of a mixture of two key signatures.)
|
||||
.PP
|
||||
rmaj the cross correlation coefficients with Craig Sapp's major key model
|
||||
for each of the 11 keys (C, C#, D, ...,B).
|
||||
.PP
|
||||
rmaj the cross correlation coefficients with Craig Sapp's minor key model
|
||||
for each of the 11 keys (C, C#, D, ...,B).
|
||||
.PP
|
||||
pitchact is a similar histogram but is weighted by the length of
|
||||
the notes.
|
||||
.PP
|
||||
chanvol indicates the value of the control volume commands in the
|
||||
midi file for each of the 16 channels. The maximum value is 127.
|
||||
It scales the loudness of the notes (velocity) by its value.
|
||||
.PP
|
||||
chnact returns the amount of note activity in each channel.
|
||||
.PP
|
||||
trkact returns the number of notes in each track.
|
||||
@@ -87,24 +111,210 @@ all channels except the percussion channel.
|
||||
collisions. Midistats counts the bar rhythm patterns using a hashing
|
||||
function. Presently collisions are ignored so occasionally two
|
||||
distinct rhythm patterns are counted as one.
|
||||
.SH Advance Percussion Analysis Tools
|
||||
.PP
|
||||
Midistats prints a number of arrays which may be useful in
|
||||
determining where the music in the track is a melody line or
|
||||
chordal rhythmic support. These arrays indicate the properties
|
||||
for each of the 16 channels. (The percussion channel 9 contains
|
||||
zeros.) In the case same channel occurs in several tracks, these
|
||||
numbers are the totals for all track containing that channel.
|
||||
Here is a description of these properties.
|
||||
.PP
|
||||
nnotes: the total number of notes in each channel
|
||||
.br
|
||||
nzeros: the number of notes whose previous note was the same pitch
|
||||
.br
|
||||
nsteps: the number of notes whose pitch difference with the previous
|
||||
note was less than 4 semitones.
|
||||
.br
|
||||
njumps: the number of notes whose pitch difference with the previous
|
||||
note was 4 or more semitones.
|
||||
.br
|
||||
rpats: the number of rhythmpatterns for each channels. This is a
|
||||
duplication of data printed previously.
|
||||
.br
|
||||
pavg: the average pitch of all the notes for each channel.
|
||||
.PP
|
||||
In addition the midistats may return other codes that describe
|
||||
other characteristics. They include
|
||||
|
||||
unquantized - the note onsets are not quantized
|
||||
.br
|
||||
triplets - 3 notes played in the time of 2 notes are present
|
||||
.br
|
||||
qnotes - the rhythm is basically simple
|
||||
.br
|
||||
clean_quantization - the note onsets are quantized into 1/4, 1/8, 1/16 time units.
|
||||
.br
|
||||
dithered_quantization - small variations in the quantized note onsets.
|
||||
.br
|
||||
Lyrics - lyrics are present in the meta data
|
||||
.br
|
||||
programcmd - there may be multiple program changes in a midi channel
|
||||
|
||||
|
||||
|
||||
.SH Advanced Percussion Analysis Tools
|
||||
|
||||
.PP
|
||||
The MIDI file devotes channel 9 to the percussion instruments
|
||||
and over 60 percussion instruments are defined in the MIDI
|
||||
standard. Though there is a lot of diversity in the percussion
|
||||
track, for most MIDI files only the first 10 or so percussion
|
||||
instruments are important in defining the character of the track. The
|
||||
program Midiexplorer has various tools for exposing the percussion
|
||||
channel which are described in the documentation. The goal
|
||||
here is to find the essential characteristics of the percussion
|
||||
track which distinguishes the MIDI files. This is attempted
|
||||
in the program midistats. Here is a short description.
|
||||
|
||||
|
||||
.br
|
||||
|
||||
A number of experimental tools for analyzing the percussion channel
|
||||
(track) were introduced into midistats and are accessible through
|
||||
the runtime arguments. When these tools are used in a script which
|
||||
runs through a collection of midi files, you can build a database
|
||||
of percussion descriptors. Some more details are given in the
|
||||
file drums.txt which comes with this documentation.
|
||||
of percussion descriptors.
|
||||
|
||||
.SH OPTIONS
|
||||
.TP
|
||||
.B -corestats
|
||||
.TP
|
||||
.B -pulseanalysis
|
||||
.TP
|
||||
.B etc. (See drums.txt in doc folder.)
|
||||
.PP
|
||||
-corestats
|
||||
.br
|
||||
outputs a line with 5 numbers separated by tabs. eg
|
||||
.br
|
||||
1 8 384 4057 375
|
||||
.br
|
||||
It returns the number of tracks, the number of channels, the
|
||||
number of divisions per quarter note beat (ppqn),
|
||||
the number of note onsets in the midi file, and the maximum
|
||||
number of quarter note beats in midi file.
|
||||
|
||||
|
||||
.PP
|
||||
-pulseanalysis
|
||||
.br
|
||||
counts the number of note onsets as a function of its onset time
|
||||
relative to a beat, grouping them into 12 intervals and returns
|
||||
the result as a discrete probability density function. Generally,
|
||||
the distribution consists of a couple of peaks corresponding
|
||||
to quarter notes or eigth notes. If the distribution is flat,
|
||||
it indicates that the times of the note occurrences have not been
|
||||
quantized into beats and fractions. Here is a sample output.
|
||||
.br
|
||||
0.349,0.000,0.000,0.160,0.000,0.000,0.298,0.000,0.000,0.191,0.000,0.000
|
||||
|
||||
.PP
|
||||
-panal
|
||||
.br
|
||||
Counts the number of note onsets for each percussion instrument. The first
|
||||
number is the code (pitch) of the instrument, the second number is the
|
||||
number of occurrences. eg.
|
||||
.br
|
||||
35 337 37 16 38 432 39 208 40 231 42 1088 46 384 49 42 54 1104 57 5 70 1040 85 16
|
||||
|
||||
.PP
|
||||
-ppatfor n
|
||||
.br
|
||||
where n is the code number of the percussion instrument. Each beat
|
||||
is represented by a 4 bit number where the position of the on-bit
|
||||
indicates the time in the beat when the drum onset occurs. The bits
|
||||
are ordered from left to right (higher order bits to lower order
|
||||
bits). This is the order of bits that you would expect in a
|
||||
time series.
|
||||
Thus 0 indicates that there was no note onset in that beat, 1 indicates
|
||||
a note onset at the end of the beat, 4 indicates a note onset
|
||||
in the middle of the beat, and etc. The function returns a string
|
||||
of numbers ranging from 0 to 7 indicating the presence of note onsets
|
||||
for the selected percussion instrument for the sequence of beats
|
||||
in the midi file. Here is a truncated sample of the output.
|
||||
.br
|
||||
|
||||
0 0 0 0 0 0 0 0 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 4 4 0
|
||||
1 0 0 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 0 0
|
||||
1 0 5 0 1 0 5 0 1 etc.
|
||||
|
||||
.br
|
||||
One can see a repeating 4 beat pattern.
|
||||
|
||||
.PP
|
||||
-ppat
|
||||
.br
|
||||
midistats attempts to find two percussion instruments in the midi file
|
||||
which come closest to acting as the bass drum and snare drum.
|
||||
If it is unsuccessful, it returns a message of its failue. Otherwise,
|
||||
encodes the position of these drum onsets in a 8 bit byte for each
|
||||
quarter note beat in the midi file. The lower (right) 4 bits encode the
|
||||
bass drum and the higher (left) 4 bits encode the snare drum in the
|
||||
same manner as described above for -ppatfor.
|
||||
.br
|
||||
0 0 0 0 0 0 0 0 0 0 33 145 33 145 33 145 33 145 33 145 33 145 33 145
|
||||
.br
|
||||
33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145 33 145
|
||||
.br
|
||||
33 145 33 145 33 145 33 145 33 145 33 and etc.
|
||||
|
||||
|
||||
.PP
|
||||
-ppathist
|
||||
.br
|
||||
computes and displays the histogram of the values that would appear
|
||||
when running the -ppat. eg.
|
||||
.br
|
||||
bass 35 337
|
||||
.br
|
||||
snare 38 432
|
||||
.br
|
||||
1 (0.1) 64 32 (2.0) 8 33 (2.1) 136 144 (9.0) 8 145 (9.1) 136
|
||||
.br
|
||||
The bass percussion code, the number of onsets, and the snare
|
||||
percussion code and the number of onsets are given in the
|
||||
first two lines. In the next line the number of occurrences of
|
||||
each value in the -ppat listing is given. The number in parentheses
|
||||
splits the two 4-bit values with a period. Thus 33 = (2*16 + 1).
|
||||
|
||||
.PP
|
||||
-pitchclass
|
||||
.br
|
||||
Returns the pitch class distribution for the entire midi file.
|
||||
|
||||
.PP
|
||||
-nseqfor n
|
||||
.br
|
||||
Note sequence for channel n. This option produces a string of bytes
|
||||
indicating the presence of a note in a time unit corresponding to
|
||||
an eigth note. Thus each quarter note beat is represented by two
|
||||
bytes. The pitch class is represented by the line number on the
|
||||
staff, where 0 is C. Thus the notes on a scale are represented
|
||||
by 7 numbers, and sharps and flats are ignored. The line number is
|
||||
then converted to a bit position in the byte, so that the pitch
|
||||
classes are represented by the numbers 1,2,4,8, and etc. A chord
|
||||
of consisting of two note onsets would set two of the corresponding
|
||||
bits. If we were to represent the full chromatic scale consisting
|
||||
of 12 pitches, then we would require two-byte integers or
|
||||
twice of much memory.
|
||||
.br
|
||||
Though the pitch resolution is not sufficient to distinguish
|
||||
major or minor chords, it should be sufficient to be identify some
|
||||
repeating patterns.
|
||||
.PP
|
||||
-nseq
|
||||
.br
|
||||
Same as above except it is applied to all channels except the
|
||||
percussion channel.
|
||||
.br
|
||||
.PP
|
||||
-nseqtokens
|
||||
Returns the number of distinct sequence elements for each channel.
|
||||
The channel number and number of distinct elements separated by
|
||||
a comma is returned in a tab separated list for all active channels
|
||||
except the percussion channel. Here is an example.
|
||||
.br
|
||||
2,3 3,4 4,11 5,6 6,3 7,3 8,6 9,3 11,2 12,1
|
||||
.br
|
||||
|
||||
-ver (version number)
|
||||
|
||||
|
||||
.SH AUTHOR
|
||||
Seymour Shlien <fy733@ncf.ca>
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
abcMIDI : abc <-> MIDI conversion utilities
|
||||
|
||||
midi2abc version 3.59 February 08 2023
|
||||
abc2midi version 4.85 December 23 2023
|
||||
abc2abc version 2.20 February 07 2023
|
||||
yaps version 1.92 January 06 2023
|
||||
abcmatch version 1.82 June 14 2022
|
||||
abc2midi version 4.91 March 02 2024
|
||||
abc2abc version 2.21 February 19 2024
|
||||
yaps version 1.93 February 19 2024
|
||||
abcmatch version 1.83 February 19 2024
|
||||
midicopy version 1.39 November 08 2022
|
||||
midistats version 0.82 December 17 2023
|
||||
midistats version 0.87 February 11 2024
|
||||
|
||||
24th January 2002
|
||||
Copyright James Allwright
|
||||
|
||||
365
midistats.c
365
midistats.c
@@ -1,5 +1,4 @@
|
||||
/* midistats - program to extract statistics from MIDI files
|
||||
* Derived from midi2abc.c
|
||||
/* Derived from midi2abc.c
|
||||
* Copyright (C) 1998 James Allwright
|
||||
* e-mail: J.R.Allwright@westminster.ac.uk
|
||||
*
|
||||
@@ -16,9 +15,25 @@
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
||||
*/
|
||||
*/
|
||||
|
||||
#define VERSION "0.82 December 17 2023 midistats"
|
||||
#define VERSION "0.87 February 11 2024 midistats"
|
||||
|
||||
/* midistrats.c is a descendent of midi2abc.c which was becoming to
|
||||
large. The object of the program is to extract statistical characterisitic
|
||||
of a midi file. It is mainly called by the midiexplorer.tcl application,
|
||||
but it now used to create some databases using runstats.tcl which
|
||||
comes with the midiexplorer package.
|
||||
|
||||
By default the program produces a summary that is described in the
|
||||
midistats.1 man file. This is done by making a single pass through
|
||||
the midi file. If the program is called with one of the runtime
|
||||
options, the program extracts particular information by making more
|
||||
than one pass. In the first pass it creates a table of all the
|
||||
midievents which is stored in memory. The midievents are sorted in
|
||||
time, and the requested information is extracted by going through
|
||||
this table.
|
||||
*/
|
||||
|
||||
#include <limits.h>
|
||||
/* Microsoft Visual C++ Version 6.0 or higher */
|
||||
@@ -52,6 +67,10 @@ void stats_finish();
|
||||
float histogram_perplexity (int *histogram, int size);
|
||||
void stats_noteoff(int chan,int pitch,int vol);
|
||||
void stats_eot ();
|
||||
void keymatch();
|
||||
void outputChannelSummary();
|
||||
void clearTrackNm ();
|
||||
|
||||
#define max(a,b) (( a > b ? a : b))
|
||||
#define min(a,b) (( a < b ? a : b))
|
||||
|
||||
@@ -65,6 +84,7 @@ static FILE *outhandle; /* for producing the abc file */
|
||||
int tracknum=0; /* track number */
|
||||
int lasttrack = 0; /* lasttrack */
|
||||
int division; /* pulses per quarter note defined in MIDI header */
|
||||
int halfdivision; /* pulses per eighth note */
|
||||
int quietLimit; /* minimum number of pulses with no activity */
|
||||
long tempo = 500000; /* the default tempo is 120 quarter notes/minute */
|
||||
int bpm = 120; /*default tempo */
|
||||
@@ -128,8 +148,10 @@ int channel_used_in_track[17]; /* for dealing with quietTime [SS] 2023-09-06 */
|
||||
int histogram[256];
|
||||
unsigned char drumpat[8000];
|
||||
unsigned char pseq[8000];
|
||||
int pseqhist[128];
|
||||
int percnum;
|
||||
int nseqchn;
|
||||
int nseqdistinct;
|
||||
|
||||
|
||||
|
||||
@@ -173,6 +195,19 @@ struct trkstat {
|
||||
* npulses is the number of pulses.
|
||||
*/
|
||||
|
||||
struct notememory {int eighthUnit;
|
||||
int nowPitch;
|
||||
int beforePitch;
|
||||
int previousPitch;
|
||||
int zeroCount;
|
||||
int stepCount;
|
||||
int jumpCount;
|
||||
int totalNotes;
|
||||
int totalPitches;
|
||||
} nm[17];
|
||||
|
||||
struct notememory tracknm;
|
||||
|
||||
int progcolor[17]; /* used by stats_program */
|
||||
int drumhistogram[100]; /* counts drum noteons */
|
||||
int pitchhistogram[12]; /* pitch distribution for non drum notes */
|
||||
@@ -222,6 +257,7 @@ struct hashStruct {
|
||||
|
||||
int ncollisions = 0;
|
||||
int nrpatterns = 0;
|
||||
int nseqdistinct = 0;
|
||||
|
||||
void handle_collision () {
|
||||
ncollisions++;
|
||||
@@ -423,6 +459,7 @@ void stats_header (int format, int ntrks, int ldivision)
|
||||
{
|
||||
int i;
|
||||
division = ldivision;
|
||||
halfdivision = ldivision/2;
|
||||
quietLimit = ldivision*8;
|
||||
divisionsPerBar = division*beatsPerBar;
|
||||
unitDivision = divisionsPerBar/24;
|
||||
@@ -525,12 +562,6 @@ tripletsCriterion8 = (float) pulseDistribution[8]/ (float) ncounts;
|
||||
tripletsCriterion4 = (float) pulseDistribution[4]/ (float) ncounts;
|
||||
if (tripletsCriterion8 > 0.10 || tripletsCriterion4 > 0.10) printf("triplets\n");
|
||||
if (pulseDistribution[0]/(float) ncounts > 0.95) printf("qnotes");
|
||||
/*
|
||||
printf("pulseDistribution:");
|
||||
for (i=0;i<resolution;i++) printf("%6.3f",(float) pulseDistribution[i]/(float) ncounts);
|
||||
printf("\n");
|
||||
printf("nzeros = %d npeaks = %d \n",nzeros,npeaks);
|
||||
*/
|
||||
}
|
||||
|
||||
void stats_finish()
|
||||
@@ -584,6 +615,9 @@ for (i=35;i<100;i++) {
|
||||
|
||||
printf("\npitches "); /* [SS] 2017-11-01 */
|
||||
for (i=0;i<12;i++) printf("%d ",pitchhistogram[i]);
|
||||
|
||||
keymatch();
|
||||
|
||||
printf("\npitchact "); /* [SS] 2018-02-02 */
|
||||
if (npulses > 0)
|
||||
for (i=0;i<12;i++) printf("%5.2f ",pitchclass_activity[i]/(double) npulses);
|
||||
@@ -605,6 +639,7 @@ printf("collisions = %d\n",ncollisions);
|
||||
if (hasLyrics) printf("Lyrics\n");
|
||||
stats_interpret_pulseCounter ();
|
||||
printf("\n");
|
||||
outputChannelSummary();
|
||||
}
|
||||
|
||||
|
||||
@@ -676,6 +711,9 @@ for (i=1;i<17;i++) {
|
||||
printf("-1 0");
|
||||
trkdata.quietTime[i] = 0; /* in case channel i is used in another track */
|
||||
trkdata.numberOfGaps[i] = 0;
|
||||
if (lasttrack > 1) printf(" %d %d %d\n",tracknm.zeroCount,tracknm.stepCount,tracknm.jumpCount);
|
||||
else
|
||||
printf(" %d %d %d\n",nm[i-1].zeroCount,nm[i-1].stepCount,nm[i-1].jumpCount);
|
||||
printf("\n");
|
||||
|
||||
channel2nnotes[i] += trkdata.notecount[i] + trkdata.chordcount[i];
|
||||
@@ -689,6 +727,7 @@ void stats_trackstart()
|
||||
{
|
||||
int i;
|
||||
tracknum++;
|
||||
clearTrackNm ();
|
||||
for (i=0;i<17;i++) {
|
||||
trkdata.notecount[i] = 0;
|
||||
trkdata.notemeanpitch[i] = 0;
|
||||
@@ -725,6 +764,86 @@ void stats_trackend()
|
||||
}
|
||||
|
||||
|
||||
void clearNotememory () {
|
||||
int i;
|
||||
for (i=0;i<17;i++) {
|
||||
nm[i].eighthUnit = 0;
|
||||
nm[i].nowPitch = 0;
|
||||
nm[i].beforePitch = 0;
|
||||
nm[i].previousPitch = 0;
|
||||
nm[i].zeroCount = 0;
|
||||
nm[i].stepCount = 0;
|
||||
nm[i].jumpCount = 0;
|
||||
nm[i].totalNotes =0;
|
||||
nm[i].totalPitches =0;
|
||||
}
|
||||
}
|
||||
|
||||
void clearTrackNm () {
|
||||
tracknm.eighthUnit = 0;
|
||||
tracknm.nowPitch = 0;
|
||||
tracknm.beforePitch = 0;
|
||||
tracknm.previousPitch = 0;
|
||||
tracknm.zeroCount = 0;
|
||||
tracknm.stepCount = 0;
|
||||
tracknm.jumpCount = 0;
|
||||
tracknm.totalNotes = 0;
|
||||
tracknm.totalPitches = 0;
|
||||
}
|
||||
|
||||
void updateNotememory (int unit, int chn, int pitch) {
|
||||
int deltaPitch;
|
||||
if (chn == 9) return;
|
||||
if (unit == nm[chn].eighthUnit) {
|
||||
if (pitch > nm[chn].nowPitch) nm[chn].nowPitch = pitch;
|
||||
return;
|
||||
}
|
||||
/* unit is different */
|
||||
nm[chn].beforePitch = nm[chn].nowPitch;
|
||||
nm[chn].nowPitch = pitch;
|
||||
if (nm[chn].previousPitch > 0)
|
||||
{
|
||||
deltaPitch = nm[chn].beforePitch - nm[chn].previousPitch;
|
||||
if (deltaPitch < 0) deltaPitch = -deltaPitch;
|
||||
if (deltaPitch == 0) nm[chn].zeroCount++;
|
||||
else if (deltaPitch < 4) nm[chn].stepCount++;
|
||||
else nm[chn].jumpCount++;
|
||||
}
|
||||
if (nm[chn].beforePitch != 0) nm[chn].previousPitch = nm[chn].beforePitch;
|
||||
nm[chn].eighthUnit = unit;
|
||||
nm[chn].totalNotes++;
|
||||
nm[chn].totalPitches = nm[chn].totalPitches + pitch;
|
||||
}
|
||||
|
||||
void updateTrackNotememory (int unit, int chn, int pitch) {
|
||||
int deltaPitch;
|
||||
if (chn == 9) return;
|
||||
if (unit == tracknm.eighthUnit) {
|
||||
if (pitch > tracknm.nowPitch) tracknm.nowPitch = pitch;
|
||||
return;
|
||||
}
|
||||
/* unit is different */
|
||||
tracknm.beforePitch = tracknm.nowPitch;
|
||||
tracknm.nowPitch = pitch;
|
||||
if (tracknm.previousPitch > 0)
|
||||
{
|
||||
deltaPitch = tracknm.beforePitch - tracknm.previousPitch;
|
||||
if (deltaPitch < 0) deltaPitch = -deltaPitch;
|
||||
if (deltaPitch == 0) tracknm.zeroCount++;
|
||||
else if (deltaPitch < 4) tracknm.stepCount++;
|
||||
else tracknm.jumpCount++;
|
||||
}
|
||||
if (tracknm.beforePitch != 0) tracknm.previousPitch = tracknm.beforePitch;
|
||||
tracknm.eighthUnit = unit;
|
||||
/*printf("%d, %d, %d, %d, %d, %d %d\n",unit,nm[chn].beforePitch,nm[chn].previousPitch,\
|
||||
deltaPitch,nm[chn].zeroCount,nm[chn].stepCount,nm[chn].jumpCount);
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void stats_noteon(chan,pitch,vol)
|
||||
int chan, pitch, vol;
|
||||
@@ -732,6 +851,7 @@ int chan, pitch, vol;
|
||||
int delta;
|
||||
int barnum;
|
||||
int unit;
|
||||
int eigthunit;
|
||||
int dithermargin; /* [SS] 2023-08-22 */
|
||||
int cpitch; /* [SS] 2023-09-13 */
|
||||
int pulsePosition;
|
||||
@@ -783,6 +903,10 @@ int chan, pitch, vol;
|
||||
//printf("unit = %d pattern = %d \n",unit,barChn[chan].rhythmPattern);
|
||||
barChn[chan].rhythmPattern = barChn[chan].rhythmPattern |= (1UL << unit);
|
||||
chanpitchhistogram[chan*12+cpitch]++; /* [SS] 2023-09-13 */
|
||||
|
||||
eigthunit = Mf_currtime/halfdivision;
|
||||
updateNotememory (eigthunit, chan, pitch);
|
||||
updateTrackNotememory (eigthunit, chan, pitch);
|
||||
}
|
||||
|
||||
|
||||
@@ -955,6 +1079,7 @@ lastEvent++;
|
||||
if (lastEvent > 49999) {printf("ran out of space in midievents structure\n");
|
||||
exit(1);
|
||||
}
|
||||
/*if (lastEvent < 20) {printf("record_noteon %d %d %d %ld\n",chan,pitch,vol,Mf_currtime/halfdivision);}*/
|
||||
channel_active[chan+1]++;
|
||||
}
|
||||
|
||||
@@ -985,6 +1110,7 @@ void load_header (int format, int ntrks, int ldivision)
|
||||
{
|
||||
int i;
|
||||
division = ldivision;
|
||||
halfdivision = ldivision/2;
|
||||
lasttrack = ntrks;
|
||||
for (i=0;i<17;i++) channel_active[i] = 0; /* for counting number of channels*/
|
||||
}
|
||||
@@ -1153,23 +1279,27 @@ int index;
|
||||
int remainder;
|
||||
int noteNum;
|
||||
int part;
|
||||
printf("noteseqmap %d\n",chn);
|
||||
half = division/2;
|
||||
for (i = 0; i<8000; i++) pseq[i] = 0;
|
||||
for (i = 0; i <lastEvent; i++) {
|
||||
channel = midievents[i].channel;
|
||||
if (channel != chn) continue;
|
||||
pitchclass = midievents[i].pitch % 12;
|
||||
noteNum = pitch2noteseq[pitchclass];
|
||||
onset = midievents[i].onsetTime;
|
||||
index = onset/half;
|
||||
if (index >= 8000) {printf("index too large in drumpattern\n");
|
||||
if (channel == 9) continue; /* ignore percussion channel */
|
||||
if (channel == chn || chn == -1) {
|
||||
pitchclass = midievents[i].pitch % 12;
|
||||
noteNum = pitch2noteseq[pitchclass];
|
||||
onset = midievents[i].onsetTime;
|
||||
index = onset/half;
|
||||
if (index >= 8000) {printf("index too large in drumpattern\n");
|
||||
break;
|
||||
}
|
||||
pseq[index] = pseq[index] |= 1 << noteNum;
|
||||
pseq[index] = pseq[index] |= 1 << noteNum;
|
||||
}
|
||||
/*printf("pitchclass = %d noteNum =%d index = %d pseq[index] %d \n",pitchclass, noteNum, index, pseq[index]); */
|
||||
}
|
||||
printf("lastBeat = %d\n",lastBeat);
|
||||
}
|
||||
|
||||
void print_pseq () {
|
||||
int i;
|
||||
for (i=0;i<(lastBeat+1)*2;i++) {
|
||||
printf("%d ",pseq[i]);
|
||||
if (i >= 8000) break;
|
||||
@@ -1177,6 +1307,62 @@ for (i=0;i<(lastBeat+1)*2;i++) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int noteseqhist(int chan) {
|
||||
int nonzeros;
|
||||
int i;
|
||||
nonzeros = 0;
|
||||
noteseqmap(chan);
|
||||
for (i=0;i<128;i++) {
|
||||
pseqhist[i] = 0;
|
||||
}
|
||||
for (i=0;i<lastBeat;i++) {
|
||||
pseqhist[pseq[i]]++;
|
||||
}
|
||||
for (i=0;i<128;i++) {
|
||||
if (pseqhist[i] > 0)
|
||||
nonzeros++;;
|
||||
}
|
||||
return nonzeros;
|
||||
}
|
||||
|
||||
void allDistinctNoteSeq() {
|
||||
int i;
|
||||
int nonzeros;
|
||||
for (i=0;i<17;i++) {
|
||||
/*printf("\n%d,%d",i,channel_active[i+1]);*/
|
||||
if (i == 9) continue;
|
||||
if (channel_active[i+1] == 0) continue;
|
||||
nonzeros = noteseqhist(i);
|
||||
if (channel_active[i+1] > 0) printf("\t%d,%d",i+1,nonzeros);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void outputChannelSummary() {
|
||||
int i;
|
||||
for (i=0;i<17;i++) {
|
||||
printf("nnotes: ");
|
||||
for(i=0;i<16;i++) printf(" %d",nm[i].totalNotes);
|
||||
printf("\nnzeros: ");
|
||||
for(i=0;i<16;i++) printf(" %d",nm[i].zeroCount);
|
||||
printf("\nnsteps: ");
|
||||
for(i=0;i<16;i++) printf(" %d",nm[i].stepCount);
|
||||
printf("\nnjumps: ");
|
||||
for(i=0;i<16;i++) printf(" %d",nm[i].jumpCount);
|
||||
printf("\nrpats: ");
|
||||
for(i=1;i<17;i++) printf(" %d",trkdata.rhythmpatterns[i]);
|
||||
printf("\npavg: ");
|
||||
/* avoid dividing by 0 */
|
||||
for(i=0;i<16;i++) printf(" %d",nm[i].totalPitches/(1+nm[i].totalNotes));
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
void dualDrumPattern (int perc1, int perc2) {
|
||||
int i;
|
||||
int channel;
|
||||
@@ -1253,6 +1439,120 @@ for (i=0;i<lastBeat;i++) printf("%d ",drumpat[i]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
/*
|
||||
The key match algorithm is based on the work of Craig Sapp
|
||||
Visual Hierarchical Key Analysis
|
||||
https://ccrma.stanford.edu/~craig/papers/05/p3d-sapp.pdf
|
||||
published in Proceedings of the International Computer Music
|
||||
Conference,2001,
|
||||
and the work of Krumhansl and Schmukler.
|
||||
|
||||
Craig Sapp's simple coefficients (mkeyscape)
|
||||
Major C scale
|
||||
|
||||
The algorithm correlates the pitch class class histogram with
|
||||
the ssMj or ssMn coefficients trying all 12 key centers, and
|
||||
looks for a maximum.
|
||||
|
||||
The algorithm returns the key, sf (the number of sharps or
|
||||
flats), and the maximum peak which is relatable to the
|
||||
level of confidence we have of the result.
|
||||
*/
|
||||
static float ssMj[] = { 1.25, -0.75, 0.25, -0.75, 0.25, 0.25,
|
||||
-0.75, 1.25, -0.75, 0.25, -0.75, 0.25};
|
||||
|
||||
/* Minor C scale (3 flats)
|
||||
*/
|
||||
static float ssMn[] = { 1.25, -0.75, 0.25, 0.25, -0.75, 0.25,
|
||||
-0.75, 1.25, 0.25, -0.75, 0.25, -0.75};
|
||||
|
||||
static char *keylist[] = {"C", "C#", "D", "Eb", "E", "F",
|
||||
"F#", "G", "Ab", "A", "Bb", "B"};
|
||||
|
||||
static char *majmin[] = {"maj", "min"};
|
||||
|
||||
/* number of sharps or flats for major keys in keylist */
|
||||
static int maj2sf[] = {0, 7, 2, -3, 4, -1, 6, 1, -4, 3, -2, 5};
|
||||
static int min2sf[] = {-3, 4, -1, -6, -4, 3, -4 -2, -7, 0, -5, 2};
|
||||
|
||||
void keymatch () {
|
||||
int i;
|
||||
int r;
|
||||
int k;
|
||||
float c2M,c2m,h2,hM,hm;
|
||||
float rmaj[12],rmin[12];
|
||||
float hist[12];
|
||||
float best;
|
||||
int bestIndex,bestMode;
|
||||
int sf; /* number of flats or sharps (flats negative) */
|
||||
int total;
|
||||
float fnorm;
|
||||
|
||||
c2M = 0.0;
|
||||
c2m = 0.0;
|
||||
h2 = 0.0;
|
||||
best = 0.0;
|
||||
bestIndex = 0;
|
||||
bestMode = -1;
|
||||
total =0;
|
||||
for (i=0;i<12;i++) {
|
||||
total += pitchhistogram[i];
|
||||
}
|
||||
for (i=0;i<12;i++) {
|
||||
hist[i] = (float) pitchhistogram[i]/(float) total;
|
||||
}
|
||||
fnorm = 0.0;
|
||||
for (i=0;i<12;i++) {
|
||||
fnorm = hist[i]*hist[i] + fnorm;
|
||||
}
|
||||
fnorm = sqrt(fnorm);
|
||||
for (i=0;i<12;i++) {
|
||||
hist[i] = hist[i]/fnorm;
|
||||
}
|
||||
|
||||
for (i=0;i<12;i++) {
|
||||
c2M += ssMj[i]*ssMj[i];
|
||||
c2m += ssMn[i]*ssMn[i];
|
||||
h2 += hist[i]*hist[i];
|
||||
}
|
||||
if (h2 < 0.0001) {
|
||||
printf("zero histogram\n");
|
||||
return;
|
||||
}
|
||||
for (r=0;r<12;r++) {
|
||||
hM = 0.0;
|
||||
hm = 0.0;
|
||||
for (i=0;i<12;i++) {
|
||||
k = (i - r) % 12;
|
||||
if (k < 0) k = k + 12;
|
||||
hM += hist[i]*ssMj[k];
|
||||
hm += hist[i]*ssMn[k];
|
||||
}
|
||||
rmaj[r] = hM/sqrt(h2*c2M);
|
||||
rmin[r] = hm/sqrt(h2*c2m);
|
||||
}
|
||||
|
||||
for (r=0;r<12;r++) {
|
||||
if(rmaj[r] > best) {
|
||||
best = rmaj[r];
|
||||
bestIndex = r;
|
||||
bestMode = 0;
|
||||
}
|
||||
if(rmin[r] > best) {
|
||||
best = rmin[r];
|
||||
bestIndex = r;
|
||||
bestMode = 1;
|
||||
}
|
||||
}
|
||||
if (bestMode == 0) sf = maj2sf[bestIndex];
|
||||
else sf = min2sf[bestIndex];
|
||||
|
||||
printf("\nkey %s%s %d %f",keylist[bestIndex],majmin[bestMode],sf,best);
|
||||
printf("\nrmaj ");
|
||||
for (r=0;r<12;r++) printf("%7.3f",rmaj[r]);
|
||||
printf("\nrmin ");
|
||||
for (r=0;r<12;r++) printf("%7.3f",rmin[r]);
|
||||
}
|
||||
|
||||
|
||||
void percsummary () {
|
||||
@@ -1455,6 +1755,21 @@ int argc;
|
||||
}
|
||||
}
|
||||
|
||||
arg = getarg("-nseq",argc,argv);
|
||||
if (arg != -1) {
|
||||
nseqfor = 1;
|
||||
stats = 0;
|
||||
nseqchn = -1;
|
||||
}
|
||||
|
||||
|
||||
arg = getarg("-nseqtokens",argc,argv);
|
||||
if (arg != -1) {
|
||||
nseqdistinct = 1;
|
||||
stats = 0;
|
||||
}
|
||||
|
||||
|
||||
arg = getarg("-ppathist",argc,argv);
|
||||
if (arg != -1) {
|
||||
percpatternhist = 1;
|
||||
@@ -1492,10 +1807,12 @@ int argc;
|
||||
printf(" -pulseanalysis\n");
|
||||
printf(" -panal\n");
|
||||
printf(" -ppat\n");
|
||||
printf(" -ppatfor\n");
|
||||
printf(" -ppatfor pitch\n");
|
||||
printf(" -ppathist\n");
|
||||
printf(" -pitchclass\n");
|
||||
printf(" -nseqfor\n");
|
||||
printf(" -nseq\n");
|
||||
printf(" -nseqfor channel\n");
|
||||
printf(" -nseqtokens\n");
|
||||
printf(" -ver version number\n");
|
||||
printf(" -d <number> debug parameter\n");
|
||||
printf(" The input filename is assumed to be any string not\n");
|
||||
@@ -1549,7 +1866,11 @@ if (percpatternhist) {
|
||||
}
|
||||
if (nseqfor) {
|
||||
noteseqmap(nseqchn);
|
||||
print_pseq();
|
||||
}
|
||||
if (nseqdistinct) {
|
||||
allDistinctNoteSeq();
|
||||
}
|
||||
if (corestats) corestatsOutput();
|
||||
if (pitchclassanalysis) {
|
||||
pitchClassAnalysis();
|
||||
@@ -1570,6 +1891,6 @@ int argc;
|
||||
if(stats == 1) midistats(argc,argv);
|
||||
if(pulseanalysis || corestats || percanalysis ||\
|
||||
percpatternfor || percpattern || percpatternhist ||\
|
||||
pitchclassanalysis || nseqfor) loadEvents();
|
||||
pitchclassanalysis || nseqfor || nseqdistinct) loadEvents();
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -205,6 +205,26 @@ static int get_clef_octave_offset (char *clef_ending)
|
||||
if (strncmp (clef_ending, "-15", 2) == 0) {
|
||||
return -2;
|
||||
}
|
||||
/* ^8, ^15, _8, _15 does not transpose the notes in
|
||||
the midi output according to the abc standard 2.2;
|
||||
though it should display the appropriate symbol in
|
||||
the clef. For the time being I am commenting
|
||||
the other endings so abc2midi runs correctly.
|
||||
[SS] 2024.02.24
|
||||
|
||||
if (strncmp (clef_ending, "^8", 2) == 0) {
|
||||
return 1;
|
||||
}
|
||||
if (strncmp (clef_ending, "^15", 2) == 0) {
|
||||
return 2;
|
||||
}
|
||||
if (strncmp (clef_ending, "_8", 2) == 0) {
|
||||
return -1;
|
||||
}
|
||||
if (strncmp (clef_ending, "_15", 2) == 0) {
|
||||
return -2;
|
||||
}
|
||||
*/
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
50
parseabc.c
50
parseabc.c
@@ -688,7 +688,7 @@ int isclef (char *s, cleftype_t * new_clef,
|
||||
int gotclef;
|
||||
|
||||
gotclef = 0;
|
||||
new_clef->octave_offset = 0;
|
||||
/*new_clef->octave_offset = 0; [SS] 2024-02.22 */
|
||||
gotclef = get_standard_clef (s, new_clef);
|
||||
if (!gotclef && expect_clef) {
|
||||
/* do we have a clef in letter format ? e.g. C1, F3, G3 */
|
||||
@@ -742,6 +742,33 @@ readword (word, s)
|
||||
return (p);
|
||||
}
|
||||
|
||||
char *
|
||||
readword_with_ (word, s)
|
||||
/* This version allows ^ and _ characters to be embedded in*/
|
||||
/* the string. It is needed to parse clef=treble_8 or
|
||||
/* clef=treble^8 . [SS] 2024-02-23 */
|
||||
char word[];
|
||||
char *s;
|
||||
{
|
||||
char *p;
|
||||
int i;
|
||||
|
||||
p = s;
|
||||
i = 0;
|
||||
/* [SS] 2015-04-08 */
|
||||
while ((*p != '\0') && (*p != ' ') && (*p != '\t') && ((i == 0) ||
|
||||
((*p != '='))))
|
||||
{
|
||||
if (i < 29)
|
||||
{
|
||||
word[i] = *p;
|
||||
i = i + 1;
|
||||
};
|
||||
p = p + 1;
|
||||
};
|
||||
word[i] = '\0';
|
||||
return (p);
|
||||
}
|
||||
void
|
||||
lcase (s)
|
||||
/* convert word to lower case */
|
||||
@@ -965,7 +992,7 @@ parseclef (s, word, gotclef, clefstr, newclef, gotoctave, octave)
|
||||
{
|
||||
int successful;
|
||||
skipspace (s);
|
||||
*s = readword (word, *s);
|
||||
*s = readword_with_ (word, *s);
|
||||
successful = 0;
|
||||
if (casecmp (word, "clef") == 0)
|
||||
{
|
||||
@@ -978,7 +1005,7 @@ parseclef (s, word, gotclef, clefstr, newclef, gotoctave, octave)
|
||||
{
|
||||
*s = *s + 1;
|
||||
skipspace (s);
|
||||
*s = readword (clefstr, *s);
|
||||
*s = readword_with_ (clefstr, *s);
|
||||
if (isclef (clefstr, newclef, gotoctave, octave, 1))
|
||||
{
|
||||
*gotclef = 1;
|
||||
@@ -1743,13 +1770,6 @@ parsevoice (s)
|
||||
}
|
||||
event_voice (num, s, &vparams);
|
||||
|
||||
/*
|
||||
if (gottranspose) printf("transpose = %d\n", vparams.transpose);
|
||||
if (gotoctave) printf("octave= %d\n", vparams.octave);
|
||||
if (gotclef) printf("clef= %s\n", vparams.clefstr);
|
||||
if (gotname) printf("parsevoice: name= %s\n", vparams.namestring);
|
||||
if(gotmiddle) printf("parsevoice: middle= %s\n", vparams.middlestring);
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
@@ -3020,8 +3040,14 @@ parsemusic (field)
|
||||
p = p + 1;
|
||||
break;
|
||||
case '|':
|
||||
check_and_call_bar (DOUBLE_BAR, "");
|
||||
p = p + 1;
|
||||
if (*(p+1) == ':') {
|
||||
/* handle ||: as a variant of |: [JA] 2024-02-19 */
|
||||
check_and_call_bar (BAR_REP, "");
|
||||
p = p + 2;
|
||||
} else {
|
||||
check_and_call_bar (DOUBLE_BAR, "");
|
||||
p = p + 1;
|
||||
}
|
||||
break;
|
||||
case ']':
|
||||
check_and_call_bar (THIN_THICK, "");
|
||||
|
||||
15
store.c
15
store.c
@@ -186,7 +186,7 @@ int main()
|
||||
|
||||
*/
|
||||
|
||||
#define VERSION "4.85 December 23 2023 abc2midi"
|
||||
#define VERSION "4.91 March 02 2024 abc2midi"
|
||||
|
||||
/* enables reading V: indication in header */
|
||||
#define XTEN1 1
|
||||
@@ -2946,6 +2946,7 @@ char* s;
|
||||
part_start[(int)*p - (int)'A'] = notes;
|
||||
addfeature(PART, (int)*p, 0, 0);
|
||||
checkbreak();
|
||||
v1index = notes; /* [SS] 2024-02-14 */
|
||||
v = getvoicecontext(1);
|
||||
} else {
|
||||
parts = 0;
|
||||
@@ -2975,10 +2976,11 @@ struct voice_params *vp;
|
||||
v = getvoicecontext(n);
|
||||
addfeature(VOICE, v->indexno, 0, 0);
|
||||
|
||||
if (vp->gotclef)
|
||||
/*****if (vp->gotclef)
|
||||
{
|
||||
event_octave(vp->new_clef.octave_offset, 1);
|
||||
}
|
||||
}*** [SS] 2024-03.02 */
|
||||
|
||||
if (vp->gotoctave) {
|
||||
event_octave(vp->octave,1);
|
||||
};
|
||||
@@ -4303,11 +4305,16 @@ int xoctave, n, m;
|
||||
event_fatal_error("Internal error - no voice allocated");
|
||||
};
|
||||
if (gracenotes && ignore_gracenotes) return; /* [SS] 2010-01-08 */
|
||||
if (v->octaveshift == 0) { /* [JA] 2021-05-21 */
|
||||
|
||||
/* [SS] 2024-03-02
|
||||
printf("clef->octave_offset = %d v->octaveshift = %d\n",clef->octave_offset,v->octaveshift);
|
||||
if (v->octaveshift == 0) { [JA] 2021-05-21
|
||||
octave = xoctave + clef->octave_offset;
|
||||
} else {
|
||||
octave = xoctave + v->octaveshift;
|
||||
}
|
||||
*/
|
||||
octave = clef->octave_offset + v->octaveshift + xoctave; /*[SS] 2024-03-02*/
|
||||
num = n;
|
||||
denom = m;
|
||||
if (v->inchord) v->chordcount = v->chordcount + 1;
|
||||
|
||||
2
toabc.c
2
toabc.c
@@ -21,7 +21,7 @@
|
||||
|
||||
/* back-end for outputting (possibly modified) abc */
|
||||
|
||||
#define VERSION "2.20 Feb 07 2023 abc2abc"
|
||||
#define VERSION "2.21 Feb 19 2024 abc2abc"
|
||||
|
||||
/* for Microsoft Visual C++ 6.0 or higher */
|
||||
#ifdef _MSC_VER
|
||||
|
||||
@@ -22,7 +22,7 @@
|
||||
/* yapstree.c - back-end for abc parser. */
|
||||
/* generates a data structure suitable for typeset music */
|
||||
|
||||
#define VERSION "1.92 January 06 2023 yaps"
|
||||
#define VERSION "1.93 February 19 2024 yaps"
|
||||
#include <stdio.h>
|
||||
#ifdef USE_INDEX
|
||||
#define strchr index
|
||||
|
||||
Reference in New Issue
Block a user